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Abstract

Each year, many preventable highway automobile accidents involving single vehicles are caused by
inattention and distraction. These accidents are classified as single vehicle road departures. Lane
departure and curve negotiation warning systems are an emerging technology to help prevent these
types of accidents.I plan to build a road departure warning system that learns individual driver
behavior, and uses this knowledge to reduce false alarms and increase warning time. Current
warning systems are physics based -- they look at vehicle trajectory, but mainly ignore driver ability
and characteristics. I propose to develop an adaptive lane departure and curve negotiation warning sys-
tem. This system should learn individual traits of the driver -- both stationary and changing, and use
this information to improve warning time and reduce false alarms. A number of research issues are
involved in this work, as it has to improve upon the state of the art, yet not become so complicated to
use that the average driver would feel uncomfortable using it. In this proposal, I will discuss these
issues and describe preliminary results in using a connectionist approach to predict the driver’s steer-
ing response given vehicle state information. This approach can successfully detect lane changes,
which I treat as surrogate road departures.
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Thesis Statement

I plan to build a road departure warning system that learns individual driver behavior, and uses
this knowledge to reduce false alarms and increase warning time.

1. Introduction

This thesis has the goal of developing a driver adaptive warning system which is capable of both lane
departure and curve negotiation warning, for use in preventing single vehicle road departure accidents,
also known as Run-Off-Road (ROR) accidents. This problem has significance because of the number
of traffic fatalities which result from ROR crashes. Preventing a portion of these accidents would have
a real impact in the number of lives saved.

Current warning systems, such as Pomerleau’s RALPH warning system [35] use physics based mod-
els, such as looking at the position of the vehicle in the lane, or looking at the direction the vehicle is
pointing relative to the lane and calculating a time to lane crossing metric. While these systems work
well, they do not capture individual driver traits which could be exploited to improve the efficiency of
the system.

These traits vary between different drivers. They also exist within the same driver, over time. Examples
of differences include mean lane position, lane position variance, steering wheel reversal rate, steering
wheel reversal magnitude, etc. While most of the behaviors expressed through these differences are
safe, drivers also engage in unsafe behaviors, such as straddling two lanes or excessive weaving.

This leads to issues which make this problem interesting from a machine learning standpoint. I am try-
ing to model a plant (in this case, a driver) whose reactions to a given situation change over time. The
time period over which the change occurs is variable. The domain is noisy, and I do not have any posi-
tive examples of the situation I am trying to avoid (ROR crashes). I also only want to learn behaviors
which are safe expressions of individuality. If the driver is slowly falling asleep, I do not want to learn,
and therefore allow, the sluggish driving which leads up to the eventual ROR. Furthermore, the algo-
rithm has to operate in real time.

Gathering appropriate data to test the system presents a challenge. Ultimately, the system has to set a
threshold, beyond which the driver is in danger of an ROR. However, setting this threshold without any
examples of RORs is difficult. To gather positive examples of ROR situations would require repeatedly
driving a test vehicle off road by distracting or incapacitating the driver. Obviously, this is not a possi-
bility. Therefore, I have to propose operational definitions of ROR and true and false alarms in terms of
available data.

The system sensitivity needs to be tunable, and the system operation needs to be easily understood by
the average driver. If the warning system uses a very complicated set of criteria by which it triggers
alarms, the driver may not be able to develop a feel for why the system is doing what it is doing, and
would not want to use it. While the internal complexity of the model is not necessarily an issue, how it
manifests itself to the driver is. An (exaggerated) example of this would be if the system took the day
of week into account when deciding whether or not to trigger an alarm, perhaps because more ROR
crashes occur on Mondays. In this case, a situation which would not sound an alarm six days of the
week would sound an alarm on Mondays. This would confuse the user, as he may not be aware that the
system is more sensitive on Mondays. User testing, therefore, is a critical method of evaluation.



6

Driver Adaptive Warning Systems 4/1/98

Addressing these issues will require contributions to 1) driver modeling, through the development and
analysis of a low level driver model, and 2) machine learning, through the development of a learning
method which properly learns safe variations in time-varying plant behavior and learns anomalous
behavior without true positive examples.

1.1. Motivation

In 1996, there were over 37,000 automobile accidents involving fatalities, in which 42,000 people
were killed. While there are many different causes of accidents, those that involve a single vehicle are
frequently caused by inattention or incapacitation, leading to roadway departure. Of the 37,000 fatal
accidents in 1996, over 21,000 were single vehicle accidents. These 21,000 accidents resulted in
22,500 fatalities, or 56% of the total [44]. The combined cost ofall accidents is estimated to be over
$150 billion per year.

Intuitively, most people would agree that different people drive differently. We have all seen people
weaving wildly on the road. For some, this may indicate an incapacitation, such as fatigue or drunken-
ness. For others, this is simply how they drive. Some people hug one side of the road, as if afraid of
getting brushed by traffic on the other side. Others, it seems, sometimes straddle two lanes. There are
different types of behaviors like this that drivers engage in. Some of these behaviors, such as the ten-
dency to hug one side of the road and corner-cutting, are safe expressions of personal preference.
Other behaviors, such as straddling two lanes or weaving wildly, can be unsafe. The difficulty in devel-
oping an adaptive lane departure warning system lies partly in adapting to safe changes in driver
behavior, while not adapting to unsafe changes.

As we will see in Section 4, this type of behavior varies not only between drivers, but also within the
same driver over time. The driving style of a person during the first hour of an eight hour trip can look
different than during the last hour. Generally, these differences can have an impact on the alarm rate of
a warning system, but do not affect overall driver safety. Therefore, it is useful to adapt to these
changes. Because of this, a one time adaptation is not sufficient. Rather, the system should slowly
adapt itself over time, being sensitive enough to learn large scale changes in lane keeping behavior, but
not so responsive as to never issue a warning, because it has adapted to an unsafe situation.

Curve negotiation is another area where many accidents occur. Of the 21,000 single vehicle fatal acci-
dents mentioned above, 4,800 occurred due to errors in curve negotiation. This is particularly a prob-
lem for trucks and other large vehicles in mountainous areas, where curves can be sharp, and shoulders
are narrow. There is not a lot of room for mistakes when driving in this type of environment. Posted
curve speed signs are sometimes missed or ignored. Driver differences also exist when negotiating
curves. Certain drivers are aggressive, traverse curves at high speed, and brake fairly late. Other drivers
are more cautious, and slow down well in advance of a curve. These differences are worth accounting
for, to prevent false alarms. The success of this technology will require accurate GPS maps, which
allow the vehicle to locate itself relative to oncoming curves, so that warnings can be issued with
enough time to be useful.

1.2. Definitions

It would be difficult to accomplish the goal of my thesis, which is to minimize false run off road (ROR)
alarms and improve response to true ROR situations, without defining ROR crashes, ROR situations
and false and true alarms. The motivation for this goal is that I believe it will lead to fewer ROR situa-
tions, and consequently, fewer ROR crashes. I define an ROR situation as:
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ROR Situation (ROR): Any vehicle state which leads to an ROR crash. However, not all ROR situa-
tions lead to ROR crash, as the driver may initiate corrective action.

ROR Crash: An event in which at least 1 tire crosses a lane boundary, resulting in a full lane departure
and/or crash.

In the datasets which I currently possess, there were no ROR crashes. In fact, encountering a true ROR
crash is very rare, and not something I can wait for. One possibility is to treat lane changes as true
alarms, as vehicle state during lane changes can be similar to vehicle state during ROR situations due
to unintended steering input or inattention. This is justified in Section 2.1.

There are two levels to the definitions issue. The first is an abstract definition of what vehicle states
lead to roadway departures for a given driver (true alarms), and what states are normal, yet trigger cur-
rent alarm systems (false alarms). The second issue is to develop operational definitions which can be
used to evaluate a warning system on data in currently existing datasets.

The first issue, regarding what leads to an ROR crash, is very complicated. It depends on vehicle state,
driver state, road state, and surrounding environment. Unfortunately, there is no useful boundary in
vehicle state space beyond which an ROR crash will definitely occur. It would be nice to be able to say
that if vehicle_yaw > x, lateral_position < y, androad curvature > z, then an ROR will occur. While it
may be possible, using physics, to say that beyond a point no recovery is possible, triggering a warning
would be useless. There is also no single driver behavior which shouldalways trigger an alarm, as even
rapid swerving may have a legitimate cause, such as obstacle avoidance. Without taking the surround-
ing environment (such as the presence of other vehicles), road conditions (such as friction and shoulder
width), and human factors into account, it is impossible to determine whether or not an alarm should
trigger. While I am interested in driver behavior and how it is affected by surrounding vehicles, there
are issues which I am not going to deeply investigate. These issues include roadway conditions, human
factors, and road configuration (i.e., the presence or absence of shoulders). As I will show in Section
4.4, it is possible to improve upon the state of the art without fully addressing these issues. Therefore,
conclusive abstract definitions of true and false alarms is outside the scope of my thesis.

However, I do present a working set of definitions, which I feel are reasonable. If the alarm triggers in
a situation which the driver deems normal, he will feel it is a false alarm. Driver perception is therefore
very important in classifying an alarm. The definitions of a system designer are irrelevant if the end
user does not agree with them.

Hadden et al. [19] have done a simulation study of lane departure countermeasure effectiveness. The
particulars of the study are discussed in Section 2.1. However, during analysis of the results, they put
forth 6 possible outcomes of a countermeasure intervention. I use this framework to present the follow-
ing definitions (Note, when I refer to the driver, I mean a normal driver who is not incapacitated and is
paying attention to the road):

Safe True Alarm: An alarm triggered in time to prevent a situation where the driver, in hindsight, rec-
ognizes that his actions could have resulted in an ROR crash.

Late True Alarm: An alarm triggered in a situation where the driver, in hindsight, recognizes that his
actions could have resulted in an ROR crash. This alarm, however, comes too late to
fully prevent an ROR situation, and an ROR crash may have occurred.

Safe False Alarm:An alarm which triggers in a situation where the driver, in hindsight, does not
believe that his actions could have resulted in an ROR crash. Besides the alarm itself,
there is no other consequence.
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Unsafe False Alarm:An alarm which triggers in a situation where the driver, in hindsight, does not
believe that his actions could have resulted in an ROR crash. In this case, the alarm
causes a reaction in the driver which could lead to an unsafe situation.

False Negative:A situation in which the driver, in hindsight, recognizes that his actions could have
resulted in an ROR crash, yet no alarm triggered.

True Negative:A situation in which the driver, in hindsight, does not believe his actions would result
in an ROR crash, and no alarm triggered. This is by far the most common outcome.

Burgett [6] presents definitions of system efficiency, which is discussed in Section 6.2 of this proposal.
He also mentions another category of false alarms, although I have altered his definition to make it
more applicable to this domain:

Nuisance Alarm: A safe false alarm caused by either poor system design or perceptual error.

For the 2nd issue, regarding design and preliminary evaluation, it may be fair to say that lane changes
are similar to true alarms. The validity of this requires an analysis of vehicle state directly before true
ROR situations, and a comparison against vehicle state before and during voluntary lane changes. The
IVHS Countermeasures work, described in Section 2.1 implies that vehicle state during ROR crashes
due to inattention or incapacitation is grossly similar to a lane change. The goal of the system in this
case would be to trigger warnings when approaching the alarm state, while not triggering during other,
similar states.

Another question which arises, given my objective, is how much of an increase in warning time and
decrease in false alarm rate should I attempt to achieve? These two issues are very closely related, and
improving one generally has a negative effect on the other. System efficiency can be described as being
positively correlated with warning time, and negatively correlated with the number of false alarms.
Most current systems use a time to lane crossing (TLC) method, in which the lateral position and lat-
eral velocity of the vehicle is used to determine the time for a tire to cross a lane boundary. Warning
systems which use TLC set a threshold. When the time to cross a lane boundary drops below this
threshold, an alarm is triggered. Since TLC based systems can have user defined thresholds, a warning
can be given as early as desired. However, the higher the TLC threshold, the more false alarms are gen-
erated. Setting the TLC threshold such that an alarm is only generated when crossing a lane boundary
has zero warning time, yet has a low false alarm rate, as passenger car drivers rarely deviate from their
lane on straight roads. Because of this relationship, the increase in warning time has to be compared to
the reduction in false alarm rate. A large decrease in false alarm rate, and greater accuracy in modeling
the driver would allow for a more warning for a true alarm.

Current research shows that drivers are possibly willing to tolerate one false alarm per hour. Anything
more than that annoys the driver so much that he turns the system off. However, the true number of
acceptable false alarms awaits the completion of a thesis on human factors in driving. Until that day,
my approach will be tunable to increase or decrease the false alarm rate (with a corresponding change
in warning time). While I do not believe I can escape the warning time/false alarm trade off, I believe I
can build a system which has greater efficiency than TLC by adapting to the driver.

Given that I am interested in lane keeping performance, which is lateral behavior, and curve speed
warning, which is longitudinal, I should also be interested in longitudinal behavior along straight roads
as well. However, I am explicitly not modeling speed keeping, headway maintenance, or car following
behavior. The reason for this is that a failure in lateral lane keeping behavior or longitudinal curve
negotiation behavior are both direct causes of ROR crashes. A causality link between the other aspects
of driver modeling mentioned above and ROR crashes has not been strongly demonstrated. As the goal
of my thesis is to reduce ROR crashes, ignoring longitudinal behavior (except for curve negotiation)
does not directly impact my work.



9

Driver Adaptive Warning Systems 4/1/98

2. Previous Work

While there is a large amount of literature in driver modeling, both at the path and tactical level, there
has not been a lot of work done in driver adaptive warning systems. I begin with a brief review of some
work done to categorize and characterize single vehicle accidents, then general driver modeling work,
followed by detailed descriptions of two efforts in control strategy modeling (which has applications to
warning systems), and end with examples of actual driver warning systems. For a more extensive liter-
ature survey in the form of an annotated bibliography, see [2].

2.1. ROR Collision Avoidance Using IVHS Countermeasures

The goal of this work, done at CMU and CALSPAN, was to develop a taxonomy of roadway depar-
tures, and design functional measures which could ameliorate the effects of these crashes. The taxon-
omy broadly classifies crashes into different causal factors, such as inattention, relinquished steering
control, evasive maneuver, lost directional control, vehicle failure, and vehicle speed. 102 accidents
were selected from a database of approximately 200, and categorized into these causes. The accidents
were further broken down into type of deviation. The two types of deviation were long and short,
where a long deviation included crossing a full lane before lane departure, and a short deviation meant
a roadway departure on the side of the road closest to the vehicle. These accidents were also classified
by pre-existing event/conditions (such as road geometry, road state, presence of obstacles, etc.) and on
road and off road action by the driver. In the majority of the analysis, the accidents due to evasive
maneuvers and vehicle failure were not used, as it was decided that resolving those causes was outside
the scope of the program.

The results from this work, while encouraging, have to be properly weighed given the methods used.
The trajectory for the accidents was computed by analysis of the crash scene and intersected with a
nominal trajectory to follow the road. This included looking at the final position of the vehicle, along
with any skid marks that might be present. For accidents caused by inattention or loss of steering con-
trol, which tend to have larger times from deviation (from nominal trajectory) beginning to roadway
departure, a circular arc was fitted to points determined by skid marks. Then, vehicle velocity informa-
tion was either gotten from the driver, witnesses, or through various assumptions about the crash scene.
This was used to generate times from deviation beginning to roadway departure. This analysis deter-
mined that on average, there is about 2.12s during this period. After taking driver and vehicle response
time into account, about 1 second is left to determine that a situation is abnormal, and sound an alarm.
The presence of a typical shoulder adds about 0.5 seconds.

Taken into context, this work starts to show that departures due to inattention or incapacitation tend to
be gentler than those caused by active maneuvers. This implies that grossly, these departures are simi-
lar to lane changes. However, the actual numbers derived have to be taken with a grain of salt, as the
methodology was very inexact, due to the limited information available characterizing the crash.

In a later phase of this work [19] the authors performed a simulation study to look at the effectiveness
of TLC in preventing ROR crashes. They split up an ROR crashes into two possible cases: the first is a
1-tire ROR, which means at least one front tire has crossed a lane boundary. The second cases is a 2-
tire ROR, which is when both front tires have crossed a lane boundary. Using a dynamic vehicle model
and driver steering model, they simulated inattention (by deactivating the driver model) over sets of
curves. Using a Monte Carlo simulation to vary parameters such as velocity, incapacitation time, TLC
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threshold, and driver reaction time, they performed over 500 runs both with and without a TLC based
warning system in place. The results show that increasing TLC threshold prevents RORs, at the
expense of false alarms. These results show the inherent trade-off which must occur when balancing
warning time against false alarms.

2.2. Control Theoretic Models

Investigation of control theoretic approaches to driver modeling began as early as the 1950s, when
Pipes [33] modeled the driver as a gain and a time delay, and modeled the vehicle lateral position as an
integration of steering wheel angle. Over the next few decades, that work was expanded upon, as the
model of the driver became more complicated and attempted to take into account evidence provided by
studies of driver behavior.

Wierwille [46], who has been active in this field for many years, presented an early model which took
into account past lateral displacement, future roadway curvature, and driver vantage point. This work
showed that information on the upcoming road curvature helps to eliminate the effects of perceptual
and reaction lag.

Crossman and Szostak [12] proposed a three level model which combined open loop control of vehicle
curvature given upcoming road information, with closed loops around lateral position and lateral
velocity. McRuer et al. [26] added a “precognitive” open loop control module, which was used to
establish the driver on an appropriate trajectory for lane changes and obstacle avoidance maneuvers.

Baxter and Harrison [3] take a previous linear control model, and add a non-linear hysteresis element,
in an attempt to model the oscillations of drivers driving on straight roads. Rather than raw vehicle
state, they use aim-point error, which is the angle between the vehicle heading and the lane centerline
at a certain lookahead distance. Their results indicate a 10% improvement in modeling accuracy over
the standard linear model they tested against.

The main assumption in control theoretic approaches to driver modeling is that humans, and the vehi-
cles that they control, can be adequately simulated using 2nd order systems. Stochastic and non-linear
effects, such as crosswind response, cannot be modeled well using these approaches. Furthermore, it
becomes very difficult to take into account environmental effects such as the presence of other vehi-
cles. One area where these approaches have worked well is in car following, as show by Chandler [10],
Bekey [4], Ioannou [21], and Naab [27]

2.3. HMM Based Intent Recognition

Liu and Pentland [24] at the Nissan-Cambridge Research Labs in Boston have developed a model of
driver intention using Hidden Markov Models (HMM)[37]. Their motivation for recognizing driver
intent is to aid in selecting a proper dynamical driver model, given the current situation. For instance,
different models would apply during an overtaking scenario, such as lane changing and acceleration
phases.

Their data was collected using a fixed based Nissan 240SX simulator. The simulator is capable of log-
ging steering position, steering velocity, and vehicle velocity and acceleration. The cab of the simula-
tor is the front half of a real 240SX, and the driver’s view is projected on large screens in front of the
windshield, with a 60x40 degree field of view. Eight male subjects were asked to drive the simulator
around a city, while they were randomly given instructions (presented on the screen), such as “change
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to the left lane,” “overtake this vehicle,” etc. This data was used to train separate HMMs for each
maneuver. During real-time operation, the observations of the vehicle state are run through each
HMM, and the one with the highest likelihood of generating the presented observation determines the
current action.

The results show that correct recognition rate is around 85%, within 1-1.5 seconds of beginning the
maneuver. The rates vary for the different maneuvers, but are generally in the mid to high 80% range.
However, these results are for detection after the maneuver has begun. It is still unclear (as lane change
maneuvers tend to be 2-4 seconds long) whether or not predicting driver intent using this method is
feasible. Certainly, for longer maneuvers such as passing, a 1-1.5 second classification time is a good
result.

While this is not a driver warning system per se, the ideas explored in this work can have an impact in
the design of a warning system. Particularly, their idea of using an HMM to generate the probability of
being involved in a certain maneuver could be useful for suppressing a warning system during the
maneuver.

2.4. Human Control Strategy Modeling

Michael Nechyba has been doing work in Human Control Strategy Modeling. His approach is to build
a hybrid model consisting of a neural architecture [29] for modeling of continuous systems, along with
an HMM for discontinuous systems [28]. Models are validated using an HMM based similarity metric
[30] that looks at the cross-probability of a sequence of observations generated by both training data,
and the model, fed back upon itself. The domain which he has concentrated on is driving.

Nechyba used a driving simulator to collect data on 6 people, where the state information recorded is
lateral, longitudinal, and angular velocity. The control outputs are steering and brake/throttle. While
the steering control is nearly linear and modeled with a neural controller, the discreteness of the brake
and throttle commands were better modeled using the HMM approach mentioned above.

The results, which demonstrate that his models do a better job at modeling drivers than an optimal
bayes classifier, are impressive. However, the model is quite complex; perhaps more so than needed for
a driver warning system. Some of the complexity was induced by the limitations of the simulator,
which is unrealistic. His work also concentrates on longer term control strategies. Shorter-term varia-
tions due to local changes in driver state and driver environment (which can be on the order of min-
utes) are not accounted for, and this is a limitation. Furthermore, his use of a cascade architecture to
learn steering output prevents it from being used in an on-line system. This is because cascade archi-
tectures are not amenable to on-line learning, as once a hidden unit is added, the input weights to that
unit are frozen. Therefore, it can’t forget what it has previously learned. In a domain where the proper
response to a situation changes over time, this limitation prevents this approach from being deployable.

2.5. Daisy

The Driver Assisting System (DAISY) [15],[31] is a comprehensive driver adaptive warning system,
geared to give warnings based on a time reserve, which is a combination of time to lane crossing
(TLC) [17], along with time to collision (with other vehicles or obstacles). The system consists of a sit-
uation analysis monitor, which uses petri-nets to classify the current situation given environmental
inputs, such as the pose of surrounding vehicles. Car following and lane keeping are provided as exam-
ples of tactical situations. An “average” driver model is ascribed to the surrounding vehicles, and used
to determine limitations in action selection.
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The actual driver model is multi-level, and consists of a rule based model for intent recognition, along
with a neural architecture for skill level control. The intent recognition module attempts to predict
what the driver will do given the current tactical situation. This information is then used to select a skill
model, which predicts the actual control inputs the driver is likely to produce to realize his predicted
intention.

The skill model is implemented using a FuzzyART [9] (Adaptive Resonance Theory) network in an
ARTMAP [8] architecture. FuzzyART is a modification of ART1 [7] for dealing with analog patterns.
ARTMAP is an associative memory, which trains two ART1 nets, one to cluster input, and one to clus-
ter output. The two ART nets are connected via an associative network. Essentially, a two level Fuzz-
yART/ARTMAP network is used to cluster feature vectors describing the pose of surrounding
vehicles. The clustering at the second level is done at a finer resolution than the first, and is then asso-
ciated with a time series of expected control outputs. There is a set of these 2-level networks, each one
corresponding to a different tactical situation.

There are 17 different FuzzyART networks for longitudinal control (describing situations such as car
following or car approaching), and 24 for lateral control (including lane keeping and overtaking). Cur-
rently, the training is all done off-line, using recorded data, and a simulated model of the test vehicle.
This is because a Genetic Algorithm [18] is used to optimize network specific parameters, such as the
relative weights of each feature in the tactical feature vector, which changes given different tactical sit-
uations. The authors believe that once the optimal feature weights are found for each different network,
they can be used during on-line training of different drivers.

The main limitations of this work as follows: First, the large number of models requires extensive
training and large amounts of data. Second, the system hasn’t been deployed on a real vehicle, so there
is no data as to its effectiveness -- even the simulation results are sketchy and hard to interpret. Third,
their dependence on a situational analysis model requires them to manually define all the situations a
driver may encounter. Finally, the system makes no allowance for changes in driver behavior over
time.

2.6. Crewman’s Associate for Path Control (CAPC)

The CAPC system [13], developed at the University of Michigan Transportation Research Institute, is
a prototype vehicle which implements a TLC based lane departure warning. While the goal of the
project was to build a driver-adaptive system, the current implementation uses hardcoded TLC thresh-
olds. CAPC uses a sophisticated model of road geometry [23] along with vehicle performance [25] to
push forward the vehicle in time, until a point at which a lane departure occurs. Heuristics are used to
determine when to sound an alarm, and the TLC thresholds are empirically determined in simulation.
There are two TLC thresholds, one for warning in the form of an audible buzzer, and another for inter-
vention via differential braking. The main contribution of this system is a refinement in how TLC is
calculated. While this improves upon the performance of TLC based systems, it still contains the
inherent limitations of TLC, such as lack of driver adaptation and inability to deal with the effects of
surrounding vehicles. A small user study was also performed. The qualitative results of this evaluation
showed that it behaved as users expected it to. There is not much detail on how many people partici-
pated, or even if they were researchers or picked from a random population.

A preliminary result in driver adaptation is also presented [32]. The ARX [11] algorithm is used to
develop a transfer function from vehicle state (lateral deviation and heading angle) to steering wheel
position. This transfer function is repeatedly computed, using slices of the data, which is from a simu-
lator. A third order function is used, although two of the poles and zeros were related to quantization
error in the state sampling. However, the dominant pole location changes as a function of time, indicat-
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ing a larger effective time constant of control. This correlates with plots of how the standard deviation
of lateral position changes over time. While this may be an indication of fatigue, numerically, the dif-
ferences are very small, and they authors haven’t shown if it is repeatable. The only difference that
they seem to be learning is in lane position variance. The use of a simulator is also a large disadvan-
tage, as driving simulators (especially unsophisticated ones) are very unrealistic and it is not clear that
control strategies for simulators and real vehicles are similar. However, this result is an indication that
driver behavior does change over time. Further evidence of this is presented in Section 4.3.

2.7. RALPH

The RALPH lane tracking system [35], described in Section 3, includes a lane departure warning sys-
tem (which from now on will be referred to as RALPH-WS, for RALPH Warning System) which
depends on TLC. The TLC is calculated by using estimates of lateral velocity and current lane posi-
tion. The upcoming geometry of the road is not accounted for. A TLC threshold is selected, and if the
current lateral velocity and lane position indicate that the driver will exceed the lane boundary in a
time less than the threshold, an alarm is sounded. There are a number of situations in which perceptual
limitations prevent proper operation of the system. Approximately 16 heuristics are applied to deter-
mine whether or not the warning system output is reliable. These heuristics include:

• The presence of a nearby obstacle or obstruction.

• Low confidence in the lane tracking system.

• If the vehicle is tailgating, or very close to the vehicle in front of it.

• If there have been too many warnings in a given time period.

Furthermore, the warning system is also disabled in situations where it looks as if the lane departure is
intentional, or corrective measures are being taken, such as:

• A high steering wheel rate, indicating a correction.

• A turn signal being active.

• Brake being applied.

While the system performs well, the false alarm rate is dependent on the style of the driver. Someone
who normally drives along the center of the road and does not deviate much has a low alarm rate.
Other users can have higher rates, as they may normally drive closer to the side of the road. The false
alarm rate is tied to the TLC threshold used. A TLC threshold of 0.0 seconds will cause an alarm to
sound only when a tire is already over the lane boundary. In area with wide shoulders, this is appropri-
ate. However, on narrow stretches of road, a higher threshold is needed.

2.8. Curve Negotiation Warning Work

There has not been much work done in vehicle based curve warning systems, and none on adaptive
curve warning systems. Tamura [42] describes heuristics to determine whether or not a given speed is
appropriate for an upcoming curve. They also use a custom GPS map to localize themselves and pro-
vide warning of upcoming curves. However, their system is not adaptive as it does not take advantage
of differences in braking onset or speed through curves. There has been some work on infrastructure
based warning systems. Bergan et al. [5] determine weight, type, speed and deceleration to determine
if a truck is in danger of tipping over. They use infrastructure mounted sensors to determine these vari-
ables, and use a sign to alert the driver. Fukuda [16] uses a road mounted microwave doppler radar to
measure vehicle speed along curves. The purpose of this is to reduce the number of oncoming lane
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encroachments by vehicles, which is apparently a major problem in Japan. Fukuda demonstrates that
using the radar to warn the driver of excessive speed (via a message board) reduced both average vehi-
cle speed and number of encroachments. While infrastructure based methods have an advantage in cost
and ease of deployment, their reliance on message boards leaves open the possibility that a driver may
miss a warning. I believe that on board systems, particularly adaptive ones which alert the driver that
he is doing something not normal for him, will ultimately prove more effective at reducing accidents
during curve negotiation.

2.9. Other Work

Takahashi and Kuroda [41] used ID3 [36], a decision tree induction algorithm, to design a controller
which anticipates the intention of a driver going downhill to downshift for engine braking. The results
showed that their ID3 derived rules, which looked at vehicle speed and acceleration, were able to trig-
ger downshifts when the driver expected them.

The University of Michigan Transportation Research Institute has conducted a large study of how
driver characteristics influence headway maintenance [14], [39]. They loaned vehicles equipped with a
prototype adaptive cruise control (ACC) system to over 100 drivers who were going on long trips. The
ACC system allowed the user to set a desired headway, and would decelerate the vehicle if the con-
straint was violated. Independent variables included driver age, sex, and cruise control usage, along
with road type and environmental factors. While the system is not adaptive, it allowed the user a choice
of headway settings. The researchers analyzed headway maintenance with ACC active and inactive.
They showed that younger drivers tend to maintain a closer headway, and selected the lowest setting
when in ACC mode. This study is one of the only large scale user studies ever conducted, and the vol-
ume of data collected will be very useful for longitudinal driver modeling.

Zhao [47] is using multiple Kalman filters to track vehicles using vision. She uses separate filters tuned
to in-lane driving and lane changes and is therefore able to track low level in-lane motion as well as
tactical level motion. This work has promise for use in a very unobtrusive data collection system.

2.10. Discussion

The previous work begins to show that there is an interest in developing driver adaptive warning sys-
tems. This is evident in the ARX based adaptation by the CAPC group, Nechyba’s results, and the
DAISY system. However, the current state of the art in driver warning systems does not include a sys-
tem which both adapts to the driver, and demonstrates a quantitative improvement over non-adaptive
systems. Furthermore, none of the work mentioned above exists in a form that allows it to be used in
an actual vehicle on a daily basis by an untrained user.

While some of the previous work does recognize the need for driver adaptation, it is regarded as a one
time procedure. There is the implicit assumption that a canonical model for an individual can be
learned, and that further modification of the model is never necessary. I believe that this is not the case,
and will present some experimental evidence in Section 4.3.
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Something else that is ignored by all work except DAISY, is the effect of other vehicles on the road-
way. For instance, it is normal for drivers in the left hand lane to ride the left boundary when a truck or
bus is passing them on the right. While DAISY does make an attempt at handling this issue, it is done
by listing all the possible high level situations (being tailgated, being passed on the right, etc.), and
training separate FuzzyART nets for them. This leads to a large set of models, whose proper use is
predicated on a valid situational analysis module to select among the models. I believe a better solution
is to design one model which accounts for the effects of surrounding vehicles on the driver’s behavior.

Furthermore, the previous work shows a lack of attention to curve negotiation, and focuses on time to
lane crossing, which may not be a good estimate of danger while negotiating curves, due to curve cut-
ting.

Finally, there is the issue of user acceptance and deployability, which is related to the predictability of
the system. The above systems, particularly Daisy, use complicated models. These complicated mod-
els may produce reactions which are not easily predictable by a user. Unfortunately, it is difficult to
confirm or deny this as there have been no real world trials with Daisy (which is another weakness).
The issue of driver acceptance is discussed further in Section 5.6

3. The Rapidly Adaptive Lateral Position Handler
(RALPH) and Navlab 8

3.1. Vehicle Description

Our primary testbed is Navlab 8, an Oldsmobile Silhouette mini-van, which is depicted in Figure 1.
The mini-van has been modified by the addition of actuators on the steering column and throttle pedal.
A 180 MHz. Pentium Pro is located in the back, and is used for all processing.

A CCD camera is mounted on the windshield, underneath the rear-view mirror. This camera is used by
RALPH for lane tracking and vision based obstacle detection. A radar obstacle sensor made by
DELCO Electronics is mounted behind the front license plate, and is used for detecting vehicles
directly ahead and to the front-left/right. Two side sensors are mounted on the sides of the vehicle, near

Figure 1: Navlab 8 sensor position.

Forward Side
SensorRadar

GPS
Antenna

Rear
Laser

Camera
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the rear. Finally, a single line laser range finder is mounted behind the rear bumper. Sensor placement
is shown in Figure 1, and range and resolution is given in table 1. Note that 360 degree sensor coverage
is not available. Sensor coverage is shown in Figure 2. From it, you can see that in adjacent lanes, vehi-

cles can be seen once they are about 34m ahead. These blindspots are due to the lack of side sensors on
the front left and right of the van.

Besides sensors for obstacle detection, Navlab 8 also has a Differential Global Positioning System
receiver, which has a resolution of +/- 3-5m. A yaw-rate gyro is mounted in the rear, along with a tilt
sensor. These allow for better curve handling.

Table 1: Sensor Description

Sensor Range Field of View Resolution

Delco Radar 120m 12 degrees 1m/range, 2
degrees

Laser 120m 20 degrees 1 cm.

Blind Spot
Sensor

3m ~70 degrees Binary only

34m

20m

36m blindspot

Radar

Right Side
Sensor

Left Side
Sensor

Laser

A

B

C

D

Figure 2: Depiction of Navlab 8 Sensor Coverage. The center vehicle is Navlab 8. Vehicles A, B, and C
are sensed, vehicle D is in a blind spot.
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3.2. RALPH

The RALPH system [35] combines a lane tracker (RALPH), lane departure warning system (RALPH-
WS), obstacle map generator (OPIE), and vehicle controller (PILOT). Besides these four main mod-
ules, there are numerous libraries developed to interface to different sensors and controller hardware.
In development for the last 3 years, RALPH is capable of controlling a vehicle at highway speeds
while tracking the lane as accurately as a typical human driver. The system is also capable of headway
maintenance and lane changes under autonomous control.

RALPH can also be used as a data logger, under both autonomous and manual control. The default
RALPH data record contains 51 fields, such as lateral displacement, upcoming road curvature, current
vehicle curvature, yaw, yaw rate, velocity, obstacle information, road visibility, pitch, time to lane
crossing, and vehicle latitude and longitude.

In addition to this, OPIE collates data from the various sensors, and provides an obstacle map in vehi-
cle-centric coordinates. The position and relative velocity (in X and Y) of the nearest vehicle in Nav-
lab’s 6-neighbor (front, front left, front right, etc.) are provided.

4. Pre-Proposal Work

This section describes work that was done to support assertions made in Section 1.1, in which I
claimed that individual drivers display different characteristics. The work has been done on two differ-
ent sets of data. First, the data sets will be described, followed by experimental results on each set. The
experiments performed include calculation of first order statistics, to look for blatant differences in
driver style, along with neural modeling for steering prediction, similar to Nechyba’s work.

4.1. Datasets

Two data sets are analyzed. One was collected using RALPH on a semi-truck, and the second was col-
lected using RALPH on Navlab 8.

4.1.1. Carnegie Mellon Research Institute Data

The Carnegie Mellon Research Institute (CMRI) collected data on 8 truck drivers over a series of runs,
mostly along the Pennsylvania Turnpike (I-76) between Pittsburgh and Philadelphia. The recording
was done using RALPH, with a subset of the normal fields recorded. The recorded fields include lane
position, road curvature, steering angle, turn signal state, velocity, and system uncertainty. See Figure
3 for examples of these signals. Post processing of the data was done to add fields for steering wheel
velocity, lateral velocity, and time to lane crossing. This post-processing revealed problems during the
data collection that resulted in the data of four drivers being eliminated for various reasons.

The normal RALPH reliability estimate is fairly instantaneous, and can briefly indicate low confidence
when going under overpasses and when illumination changes. Even though the immediate confidence
may be low, filtering in RALPH produces usable lane position estimates. Therefore, this uncertainty
measure was filtered to look for average time between periods of low certainty within a given time
frame. If the average time between uncertain measurements dropped below 8 seconds over the past
minute, the entire region is marked uncertain. This produces a very clean usability signal.
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Figure 3: Plots of CMRI Truck Driver Data.
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There is a caveat to this data. We recently found out that there is non-uniform bias in the road curvature
estimates. Given the length of the runs, we would expect to see a mean curvature near 0. Most likely,
this bias is due to minor shifts in camera yaw between runs. While the bias in curvature can be sub-
tracted out, the possible shift in camera position may also cause a small error in the lane position esti-
mate. However, Pomerleau [34] has determined that while a 1 degree shift in camera yaw can cause a
straight road to appear as a 1200m radius curvature, the overall effect on lane displacement in negligi-
ble due to redundancy in the method used by RALPH to calculate lane position.

4.1.2. Initial CMU Data Study

Description

The initial user study, which is currently in progress, will use Navlab 8, a mini-van, to collect data
from approximately 20 drivers, of both genders and over a range of ages (21-50). Potential subjects are
required to have a valid US driver’s license, and at least 4 years of driving experience in the US, with
no major traffic violations, accidents, or DUIs. The subject is told only that we are interested in learn-
ing about driving behavior, for use in a possible warning system of some kind. Details are kept sketchy,
to help avoid biasing the driver’s behavior. The driver is also told that various information will be
recorded, and that a video will be kept of the driver’s eye view of the road (that is used by RALPH).
Nothing that identifies the driver is recorded. The data that is collected is very similar to the CMRI
data, except that is has less noise (because we’re using a newer version of RALPH), and position and
velocity data is recorded for surrounding vehicles, using OPIE as described in Section 3.1

The route is from Carnegie Mellon University to Grove City, which is 50 miles north of Pittsburgh.
The route is primarily two lane (in each direction) highway driving, with short stretches of three lanes.
This allows for nearly 1.5 hours of data on each subject. The driver is not told how to drive. The only
instructions are to drive safely, and to try to remember to use the turn signal when changing lanes. I am
present in the van during the test run, sitting in the passenger seat. The touch screen that displays the
RALPH user interface, which is normally visible from the driver’s side, is turned, and has an opaque
hood over it, keeping it from view of the driver.

Experimental Effects

One concern is that the subject most likely has never driven a Silhouette, or even a mini-van. A mini-
van is large enough that it is hard to get a good feel for the boundaries and available space, particularly
on the right hand side. Due to this, most drivers initially tend to hug the left side of the road. However,
this effect seems to subside within a half hour or so of driving. Therefore, all of the analysis was per-
formed on data collected on the trip back, by which time the subject is more familiar with the space
available to him, and hopefully, is displaying driving tendencies which are more natural to him, rather
than induced by the unfamiliarity of the mini-van.

Another problem is nervousness due to driving an expensive vehicle, being recorded, and having an
experimenter present. Subjects have told me that they felt a bit tense, and were careful while driving.
This can have the effect of reducing variability in driving behavior, which is exactly what I am looking
for. I currently see three possible solutions. The first is to develop a version of RALPH which can be
easily installed in a subject’s vehicle. This would allow for unobtrusive monitoring, without having the
experimenter present, in a vehicle the subject is comfortable with. An alternative to this is to loan out
Navlab 8 to people who are making long (1+ day) trips, in the hopes that the drivers would get used to
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the feel of the mini-van, and allow their normal driving style to express itself. At this point, the subject
pool isn’t large enough to have a good feel for how much these issues are affecting the data. The final
possibility is the development of an accurate vision based car tracker. This would allow me to collect
data on other drivers as I follow them, removing all experimenter effects.

4.2. Alarm Analysis

This section looks at the number of alarms generated by methods similar to the RALPH warning sys-
tem at different alarm thresholds. The purpose of this experiment is to demonstrate that current alarm
threshold schemes (such as lane position and TLC) are not always appropriate. This is because to
reduce the number of triggers, a relatively low threshold must be selected.

There are two parameters which can be adjusted. The first is Time to Lane Crossing. An alarm can be
triggered when the TLC value drops below a certain preset threshold, signalling an impending lane
deviation. However, there is a problem with this metric. Namely, from my analysis of truck driver lane
position, some truck drivers spend as much as 30% of their time with one wheel on or outside a lane
boundary. By convention, this situation has a TLC of 0 seconds.

To get around this problem, a “virtual lane boundary” can be created, which effectively widens the
lane. The width of this virtual lane boundary is the 2nd parameter which can be adjusted. Now, a TLC
threshold can be used with the virtual lane. Note that a TLC threshold of 0 seconds is the same as trig-
gering when a tire is just past the virtual lane boundary.

I computed the virtual lane boundaries required to maintain an alarm rate of between 1 and 5 alarms
per hour, with a TLC of 0 seconds for the CMRI truck data. To do this, I generated alarms using no vir-
tual lane, then picked the topn alarms, and extended the lane width to just past where the top (n-1)th

alarm occurred. I excluded all data 10 seconds before and after a lane change (as marked by the begin-
ning and end of the turn signal). I also differentiated between lane excursions and alarms. An excur-
sion is the period of time from when an edge of the truck goes past a lane boundary to when it returns.
One alarm is generated for each excursion. Figure 4 shows this. The top plot is the truck’s lane posi-
tion. An approximately 3 second deviation occurs beginning around 500.5 seconds.
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Before computing alarm rates with virtual lane boundaries, I computed the number of alarms that
occur with no virtual lane boundary, and a TLC of 0. This is what a current lane departure warning sys-
tem such as RALPH would produce, if set to minimize the number of false positives. This is not
entirely true, however, as RALPH does allow the user to exceed the lane boundary by a tunable
amount. Table 2 gives the numbers of alarms triggered by motion to the left and the right. These alarms
are further broken down by roadway geometry, i.e,. straight roads, left curves, and right curves. A
curve is defined as any segment of road with a radius < 1500m. The numbers are computed for one
hour of four different truck drivers.

Driver 1 has the lowest false alarm rate, with 31/hour. Driver 4 would generate 240 alarms in 1 hour, if
exceeding lane boundary were the only criteria for triggering an alarm. These numbers would be even
higher if a non-0 TLC were used.

After computing virtual lane boundaries for 1-5 alarms/hour, the alarm rate does drop as expected.
However, the required lane boundaries, which are shown in Table 3, are quite large. To maintain an
alarm rate of 5/hour, driver 4 would need 0.75 meters on each side as a cushion. Driver 1 seems more
reasonable, as he would need 0.35m on the left and 0.43m on the right for 1 alarm/hour

Determining the proper selection of TLC threshold and virtual lane boundary width to achieve a warn-
ing time is difficult. The naive solution is to extend the virtual lane boundaries to encompass all the
deviations of the truck driver, and then set the TLC threshold to the desired warning time. However, as
can be seen in Table 3, this would result in very large boundaries for some drivers. The average lane
width is 3.6m. To allow a driver to encroach upon adjacent lanes by as much as 0.85m is unacceptable.

It would be desirable to minimize the size of the virtual lane boundary, as when the TLC threshold is
set to 0 seconds, the driver is allowed to drive on the boundary, and I feel that it is appropriate to try
and keep the driver within as tight a boundary as possible. However, doing so has an effect on the num-
ber of false alarms. This effect depends on the lateral velocity profile of the driver (drivers who exhibit
large, rapid steering reversals would tend to have more alarms as they will have higher lateral veloci-
ties, and hence, lower TLCs), and the TLC threshold selected. I need to conduct simulation studies to
gain a better understanding of the interaction between TLC threshold, virtual lane boundary width,
driving style, and alarm rate.

Table 2: False Alarms Generated by RALPH-WS for Truck Drivers with no Virtual
Lane Boundary

Left
Deviations

Right
Deviations

Straight
Roads

Left Curves
Right

Curves
Total

Alarms

Driver 1 7 24 14 1 16 31

Driver 2 78 30 44 37 27 108

Driver 3 165 61 60 117 49 226

Driver 4 162 42 36 127 41 204
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Another factor is the nature of the excursions. I need to further investigate two things. The first the dis-
tribution of the length of the excursions for different drivers, and the second is the distribution of the
magnitude of the excursions, i.e., how far beyond the lane do they get. If a driver spends a great deal of
time with one side of his truck 5cm beyond a lane boundary, it is acceptable to set the virtual lane
boundary to encompass that, as it is part of his driving style. However, if the majority of the excursions
are short and high magnitude, then it may be reasonable to consider them true alarms, and not adapt to
them.

Unfortunately, there is no contextual information with the truck driver data. I do not know which lane
the driver was in during the deviations. It is possible, although unlikely given the large number of devi-
ations, that the encroachments were all onto wide shoulders, and not onto adjacent lanes.

The above ideas for further investigation are useful to try andimprove current TLC-based warning sys-
tems to handle highly variable drivers. However, I believe that the experiments on alarm rates and
required virtual lane boundary widths shown in Tables 2 and 3 demonstrate that TLC based warning
systems in their current form are inadequate, and that there are serious drawbacks to the whole method.
I feel that learning normal driver response to situations could perform better than TLC, even with the
addition of virtual lane boundaries, by learning what types of deviations are normal for the driver, and
what types are not. This idea is tested using data collected from passenger car drivers in Section 4.4.
The purpose of these tests, therefore, is not to put forth virtual lane boundaries as the solution to false
alarms for truck drivers. Rather, it is to show how much time truck drivers spend outside of the lane
boundaries, and how that makes current approaches to lane departure warning systems fail for these
types of drivers.

Table 3: Virtual Lane Boundaries

Driver:
Alarm

Left
Boundary

Right
Boundary

Driver:
Alarm

Left
Boundary

Right
Boundary

Driver 1: 1 0.3500 0.4300 Driver 3: 1 0.7900 0.5100

Driver 1: 2 0.3500 0.2500 Driver 3: 2 0.7800 0.5100

Driver 1: 3 0.2800 0.2500 Driver 3: 3 0.7600 0.5100

Driver 1: 4 0.2500 0.2500 Driver 3: 4 0.7500 0.5100

Driver 1: 5 0.2500 0.1800 Driver 3: 5 0.7100 0.5100

Driver 2: 1 0.5700 0.5500 Driver 4: 1 0.8500 0.7500

Driver 2: 2 0.4100 0.5500 Driver 4: 2 0.8100 0.7500

Driver 2: 3 0.4100 0.4300 Driver 4: 3 0.7900 0.7500

Driver 2: 4 0.4100 0.3500 Driver 4: 4 0.7700 0.7500

Driver 2: 5 0.3900 0.3500 Driver 4: 5 0.7500 0.7500
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4.3. Driver Differences

This section contains results from experiments performed to examine the differences between individ-
ual drivers, and variation within a single driver. I look at basic statistical differences in lane position, to
explore how distinct individual drivers are at such a coarse level.

To begin looking at whether or not differences in driver behavior are significant, I first computed statis-
tics for 1 hour of 4 different truck drivers and 5 drivers from my own study. These statistics are com-
puted separately for straight stretches, left curves, and right curves. I look at curves separately to get an
idea of the amount of curve cutting that different drivers display. For the mini-van data, a curve is
defined as any segment of data in which the immediate road curvature is less than 2000m. For the truck
driver data, the threshold was set at 1500m, as this data is noisier and a tighter cutoff gave better quali-
tative results. Filtering is done to eliminate curves that are less than two seconds in duration, as it is
unlikely that there is much curve cutting in short curves. Figure 5 shows a sample stretch of road cur-
vature data (taken from mini-van data), segmented in straight, left curve, and right curve areas. While
the segmentation is not perfect, simple thresholding does properly classify the majority of points.

Table 4 shows statistics for the truck drivers, and table 5 shows statistics for drivers from my study,
taken on Navlab 8. From this data, it is pretty clear that there are gross differences in lane keeping per-
formance. For instance, truck driver 4 drives to the left of center while on straight roads, while drivers
1 and 3 are off to the right. Truck driver 3 significantly cuts curves when going left, but does not really
do so while turning right.
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Figure 5: Plot of curvature segmentation of mini-van driver. Blue is straight, Green
is right curve (positive curvature), and Red is left curve (negative
curvature).

Table 4: Truck Driver Lane Keeping Statistics

Straight
Mean

Straight
Stdev

Left Curve
Mean

Left Curve
Stdev

Right Curve
Mean

Right Curve
Stdev

Driver 1 0.1153 0.2894 -0.1154 0.3281 0.0175 0.1488

Driver 2 0.0067 0.3209 -0.3759 0.3079 0.1697 0.2643

Driver 3 0.1210 0.5864 -0.4201 0.2996 0.1127 0.3334

Driver 4 -0.1397 0.3607 -0.5089 0.2947 0.0940 0.3498
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Navlab driver 4, who is the only one of the Navlab drivers who has experience driving a van, tended to
stay off to the left, and was slightly left of center even while making right turns. Driver 2 was in the
center of the lane, although his standard deviation during right curves was quite high. Numerous con-
clusions such as these can be drawn about the drivers in the above tables.

The same driver also displays differences in mean lane position as a function of time. The truck driv-
ers, who were driving 8-10 hours a day, showed drifts of up to 25cm over the course of a day, when the
lane position average was computed in (approximately) hour-long segments. While this may not be a
large amount, the trucks are wide enough that a perfectly centered driver only has about 0.5 meters of
free space on each side. Table 6 shows the maximum spread of mean lane position for 2 days of 4 dif-
ferent drivers. Each day is segmented into hour long chunks, and lane changes, curves, and unreliable
data are filtered out.

The above data shows that there are differences in long term, gross behavior of drivers, both between
and within drivers, which points to a need for adaptation. The real, more difficult question is whether
these differences exist when looking at short term (on the order of seconds) driver behavior. For
instance, when do drivers reverse their steering direction to maintain safe lane tracking? Although I
need to do experiments to bear this out, I believe that there are differences at smaller time scales.

Table 5: Navlab 8 Driver Lane Keeping Statistics

Straight
Mean

Straight
Stdev

Left Curve
Mean

Left Curve
Stdev

Right Curve
Mean

Right Curve
Stdev

Driver 1 -0.1045 0.2742 -0.2342 0.2553 0.0904 0.2466

Driver 2 0.0354 0.3598 0.0028 0.2316 0.0595 0.5096

Driver 3 -0.1034 0.3214 -0.1479 0.1891 0.1612 0.2247

Driver 4 -0.3307 0.3590 -0.4987 0.3123 -0.0399 0.3570

Driver 5 -0.1247 0.2979 -0.1739 0.2256 -0.0141 0.2990

Table 6: Maximum Differences in Lane Position Mean Over the Course of a Day

Dr1,
Day 1

Dr1,
Day 2

Dr2,
Day 1

Dr2,
Day 2

Dr3,
Day 3

Dr3,
Day 2

Dr4,
Day 1

Dr4,
Day 2

Mean
Spread

0.15m 0.22m 0.17m 0.24m 0.20m 0.23m 0.26m 0.13m
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4.4. Neural Network Based Warning System

One possible method of implementing a driver adaptive warning system is to use a neural net to predict
the driver’s actions based on previous driving examples. Feraric [15] and Nechyba [29] have taken this
approach. My own experiments take a time series of vehicle state as input, and attempt to predict steer-
ing wheel position or vehicle curvature. The purpose of running these experiments is not to determine
if a neural net can learn to drive. Rather, it is to evaluate the performance of a net trained on drivera
against data from driverb. In other words, can it learn an interesting driver characteristic that is specific
to the training driver, and is consistent over different examples of the same driver?

4.4.1. Neural Net Architecture

The architecture I have chosen for my experiments is a multi-layer perceptron using the Error Back-
propagation (BP) [38] training algorithm. BP is simple, yet powerful enough to capture non-linear
effects, and trains fairly quickly. It is therefore worth trying before testing more complicated learning
schemes. The network, which is shown in Figure 6, takes a 15 sample (1 second) history of lateral
position, yaw, and road curvature, along with road curvature from 0.25, 0.5, and 1 second ahead.
Therefore, there are 48 input units. I (empirically) chose 4 hidden units, and 1 output unit to represent

lat_pos(t-15)

yaw(t-15)

curvature(t-15)

lat_pos(t-1)

yaw(t-1)

curvature(t-1)

curvature(t+4)

curvature(t+8)

curvature(t+15)

Figure 6: Neural Net Architecture. The inputs are a history of lateral position, yaw, and curvature,
plus upcoming curvature. The output is a single value representing steering wheel angle or
vehicle curvature.
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steering direction or vehicle curvature (the use of vehicle curvature is explained below). Shortcut con-
nections are used from the input layer to the output layer to capture the linear relationship between the
input and output. Training was done using 2-2.5 minutes of data, with the training stopped when cross-
validation set error was minimized.

4.4.2. Datasets

The datasets, which consist of training, cross-validation (CV), and test sets were taken from 5 mini-van
drivers. I chose to use the mini-van drivers over the truck drivers for these initial experiments as the
truck driver data has more noise, and I have video of the mini-van driver’s views. As described in Sec-
tion 4.1, each mini-van run was a round trip from Pittsburgh to Grove City, PA. I do not use data from
the Pittsburgh to Grove City segment, as drivers are becoming used to driving a mini-van during this
time. For each driver, I tried to find training, CV, and test sets with similar gross statistics, although this
was not always possible. The mean lane position, along with start and end times (relative to the begin-
ning of the run from Grove City to Pittsburgh) of each data set are shown in Table 7. Note that training
sets are generally 2-3 minutes in length, while test sets are 3-6 minutes in length. I tried to equalize the
lengths of the training sets. However, the presence of lane changes in the data made that difficult, as I
did not want to include them in the datasets. I also tried to include similar curves in each data set,
although that too was difficult, due to the nature of the segmentation. Note that while the mean lane
positions of drivers 3, 5, and 6 do not vary more than 0.05m, the mean lane positions of drivers 2 and 4
vary by up to 0.15m. This, as we will see in the following section, has an impact upon the neural net-
work training and generalization performance.

4.4.3. Results

Test Set Results

The first test trained the BP net on 2.0 minutes from driver 2, and tested against segments from drivers
2-6. The test segments were 4-5 minutes long. Driver 1 was not included in these trials because a soft-
ware problem caused his data to be sampled at half the required rate. Figure 7 shows the results of
evaluations of the net on driver 2 and driver 4.

Table 7: Mini-Van Driver Dataset Statistics

Driver
Train Set

Start
Time

Train Set
End
Time

Train Set
Mean

LanePos

CV Set
Start time

CV Set
End
Time

CV Set
Mean

LanePos

Test Set
Start
Time

Test Set
End
Time

Test Set
Mean

LanePos

Driver 2 00:15:47 00:17:50 -0.0536 00:18:04 00:20:29 0.1130 00:25:02 00:27:52 0.0776

Driver 3 00:13:45 00:16:44 -0.0608 00:16:44 00:20:44 -0.0617 00:20:44 00:26:15 -0.0286

Driver 4 00:10:33 00:13:15 -0.2796 00:17:31 00:19:39 -0.1918 00:19:39 00:23:59 -0.1950

Driver 5 00:05:39 00:07:48 -0.0876 00:07:48 00:14:29 -0.0976 00:14:29 00:18:34 -0.1002

Driver 6 00:14:42 00:17:06 -0.2490 00:17:45 00:22:06 -0.2958 00:30:59 00:35:12 -0.2835

Note: Mean Lane Position is in meters, and time is in hh:mm:ss format. Times are relative to
trial start time.



27

Driver Adaptive Warning Systems 4/1/98

From now on the notationNN(n,m) will denote the results of the evaluation of a test set from driverm
tested using an NN trained on drivern. The top plot showsNN(2,2),and as expected, the qualitative fit is
good. Driver 2, as shown in Table 5, keeps to the center of the lane. Overall, the NN trained on driver 2
attempts to steer to keep the vehicle in the center of the lane as well.

There are relatively large discrepancies at pointsA-D, marked on the plot. PointsB andC were caused
by perceptual glitches. RALPH briefly (for about 1.5-2 seconds) mistook a straight road for a curving
road. Therefore, the NN predicted a steering deflection to follow the curve. PointA appears to be a
driver-induced oscillation -- first to the right, then to the left. The movement to the left was greater than
that to the right, and the net attempts to compensate by steering to the right, to try and bring the vehicle
back to the center of the lane. PointD is another deviation to the left. The data indicates that there is no
other vehicle on the right. Therefore, the deviation was either driver or crosswind induced. At bothA
andD, the TLC values briefly dipped to 2 seconds.

The 2nd plot, showingNN(2,4), however, does not match the expected output very well. This is under-
standable, as driver 4’s mean lane position is almost a foot to the left, and the net has been trained on a
driver who drives down the center of the lane. The net’s steering output is more rightward than the
driver, because it keeps trying to pull the vehicle to the center of the lane.

Table 8 shows the RMS steering error (in degrees) ofNN(x,y), 2 <= (x,y) <= 6. I.e., rown indicates the
results of evaluating drivers 2-6 on a net trained on drivern. The boldfaced entry for rown indicates
which driver the net trained on drivern performed best on. Ideally, the diagonal entries would be bold-
faced, as that would indicate the NN is properly classifying drivers. However, only two out of the 6
drivers (Drivers 3 and 6) are properly classified. Drivers 2 and 5 are mis-classified. However, the dif-
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Figure 7: These plots show the result of evaluating an NN trained on driver 2 on drivers 2 and 4. The
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ferences between the correct classification and the network classification for these drivers are less than
0.6 degrees. Driver 4 is an anomaly. The network trained on driver 4 performs very poorly when evalu-
ated on driver 4’s test set. However, there is a 0.0850m difference in mean lane position between the
training set and test set for this driver, which could be a possible reason.

What is interesting to note is that all drivers were classified into one of two categories: Driver 3 or
Driver 6. From Table 7, you can see that Drivers 3 and 6 both had consistent mean lane positions in
their respective training, CV, and test sets. The test sets of the drivers who were mis-classified mostly
had mean lane positions which were similar to the training set mean lane positions of the categories
into which they were classified. Driver 4, however, was classified as driver 3, when by mean lane posi-
tion, it seems closer to driver 6. I am not sure why this is. I will have to look more closely at this driver,
along with the net trained on this driver to determine what is happening.

I did the above experiments to determine whether or not a BP trained NN could be trained as a “canon-
ical” driver model - one which learns a consistent, yet interesting feature of a driver. The results indi-
cate that the model I have chosen does not completely accomplish this. While this is a weak result in
driver classification, it does not invalidate the use of this approach as a driver specific warning system.
One explanation for this is that driver differences were muted in this data, due to the subject’s lack of
familiarity with the test vehicle, and their nervousness. Furthermore, the test sets were up to 10-15
minutes apart from the training sets, and the road geometry changes a lot on the route we drove. The
distance between training and test sets was necessary, as the sets were segmented by lane changes, and
some drivers performed many lane changes, making it difficult to find stretches longer than 1 or 2 min-
utes. I expect an on-line, continuous learning system would have better results, as it would be able to
update its model as conditions changed. Another possible reason for the weak performance is that I
only included raw lane position, yaw, and curvature as inputs to the net. Adding pre-processed inputs,
such as providing information on steering behavior (which I believe can differ between drivers) could
improve results. Furthermore, no training set management was done to prevent network bias from
occurring.

Lane Change Results

While the above results are interesting, the true purpose of this experiment is to gauge the performance
of my neural net approach as a lane departure warning system. To do so, I evaluate a chosen neural net
on a set of ‘true’ alarms, to see how it would react. In this case, a true alarm is a lane change. The goal
of these tests is to see at what point during a lane change does the predicted steering output begin to
differ from the driver’s steering. The earlier this happens, the better.

Table 8: NN Classification Results (RMS Degrees) of Mini-Van Drivers

Driver 2 Driver 3 Driver 4 Driver 5 Driver 6

Driver 2 4.2740 3.7019 6.3180 4.0165 6.3794

Driver 3 4.3852 2.6641 3.4262 2.7311 2.9751

Driver 4 3.5159 2.4826 3.2087 2.8144 2.9088

Driver 5 5.9210 3.6108 4.5027 3.5946 3.1631

Driver 6 3.5780 2.9457 3.0660 3.2385 2.9349
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Figure 8 shows the results of evaluating nearly 15 minutes of data from driver 2 on a network trained
on driver 2. I picked driver 2 for this experiment because even though his short term behavior was sim-
ilar to other drivers (in terms of drift and variance of lane position), the long term behavior (on the
order of 15+ minutes) was more stable than the other drivers. This is an advantage for off-line training,
because the net only needs to be trained once. For other drivers, the mean lane position varies more. I
believe that an on-line system which continually retrained the model would work well for these driv-
ers, whereas the current off-line system would not, as I do not train multiple models for a single driver.

300 400 500 600 700 800 900 1000 1100 1200 1300
−50

0

50
S

te
e

ri
n

g
 A

n
g

le
 (

d
e

g
)

300 400 500 600 700 800 900 1000 1100 1200 1300
−2

0

2

L
a

n
e

 P
o

s
 (

m
e

te
rs

)

300 400 500 600 700 800 900 1000 1100 1200 1300
0

1

2

T
u

rn
 S

ig
n

a
l

300 400 500 600 700 800 900 1000 1100 1200 1300
0

2

4

6

T
L

C
 (

s
e

c
o

n
d

s
)

Time (seconds)

Figure 8: Results of lane change detection. The green spikes in the top plot indicate where a lane
change is detected.
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The top plot is an overlay (in red) of the NN steering prediction over the driver’s steering output. The
green spikes indicate where the difference between the predicted and actual output is greater than 12.8
degrees. This threshold was empirically selected to achieve a false alarm rate similar to that of a TLC
system, which is used as a baseline, and is explained below.

This test set contains 10 true lane changes, but there were 12 alarms. In Figure 8, the true lane changes
(marked B through K) are labelled in green, while the false alarms (marked A and L) are labelled in
red. After each trigger, the alarm is disabled for 10 seconds, to prevent multiple triggers for the same
lane change. Table 9 shows results for the 10 valid lane changes. These results come from comparing
the performance of a TLC based warning system with the NN based warning system. The column
marked ‘TLC Value’ shows the TLC values at the time the NN prediction generates an alarm for each
of the true lane changes. In other words, it is what the TLC threshold would have to be to generate an
alarm at the same time as the NN. To get a measure of how much earlier the warning is given using the
NN, I also generate alarms with a TLC system using a TLC threshold of 1.0 second, although these
points are not shown in Figure 8 to reduce clutter. Other studies have used TLC thresholds of 0.7s and
1.3s [43]. I chose 1.0 to increase the warning time, and to take into account the experimental effect of
the driver perhaps driving more carefully. The column of Table 9 marked ‘Warning Time Gain’ shows
the increase in warning time provided by the NN system over the TLC system. Therefore, a positive
number in this column indicates that the NN approach performed better than TLC by detecting the lane
change earlier. A negative number means the opposite -- the TLC system detected the lane change
before the NN system. I computed the difference in alarm times by hand selecting corresponding NN
and TLC alarms and measuring the time between them.

Summary statistics are shown in Table 10. While the NN had more false alarms (2 vs. 1 in a 15 minute
period), there was an average gain in warning time of 0.48s, which is significant. To achieve a similar
warning time using TLC would require a threshold of 3.11 seconds, as this is the average of the ‘TLC
Value’ column. I therefore set the TLC threshold at 3.11 seconds, and re-ran the experiment. This
resulted in the TLC system generating 10 false alarms, which is significantly higher than the 2 pro-
duced by the NN.

It is interesting that to achieve (an average) gain of 0.48s in warning time, the TLC threshold had to be
changed from 1.0s to 3.11s. By definition, it should have had to be changed to 1.48s. I believe this is
because of the cases (D, G, H, and I) where the NN predicts the lane change significantly in advance of
TLC. These lane changes are due to slow drift, which doesn’t cause great changes in TLC (because of
low lateral velocity), but does cause a prediction error in steering output.

Table 9: Comparison Between NN and TLC Alarm Response

Lane Change
TLC Value
(seconds)

Warning
Time Gain
(seconds)

Lane Change TLC Value
Warning

Time Gain

B 2.34 0.54 G 5.81 1.06

C 1.80 0.45 H 4.38 0.39

D 6.00 1.09 I 5.41 1.01

E 3.19 0.60 J 0.58 -0.13

F 0.48 -0.22 K 1.16 0.06
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The results in Table 9 include the “outliers,” which are boldfaced or colored red. The boldfaced entries
signify where the NN gave a much earlier warning than TLC, and the red entries (lane changes F and J)
indicate where the NN triggers a warning after TLC. I picked lane changes D and J to study more
closely, as they are at the extremes of the observations. Figure 9 shows a blown up version of Figure 7,
centered around the 2 lane changes, with the TLC triggers added and marked in magenta.

D_NN and D_TLC are the trigger points of the NN and TLC on lane change D. What is interesting
about this lane change is that it is a slow drift, compared to the others. From the video recording, this
lane change maneuver is occurring on a relatively straight road. The driver just slowly starts to drift to
the right. It is slow enough at points that the TLC doesn’t drop very fast, until just before the full lane
change occurs. I feel that this example is very close to what could happen in a real ROR situation due
to unintended steering input. The early trigger in this case, relative to TLC, is encouraging.

The triggers for lane change J are marked as J_TLC and J_NN. In this case, J_TLC occurs before
J_NN. According to the video, the driver is in the left lane and decides to make a right lane change.
However, the right lane change begins while the vehicle is in a right curve. The driver steers right, to
follow the curve, and the net predicts this. However, he has to oversteer to actually change lanes. The
net notices this, and tries to pull him back to the left. The driver does steer along the curve as he
should, but only more so. This additional steering is detected by the NN, but not as quickly as in some
of the other cases.

While the NN generally does better than TLC, it does have one more alarm over the 15 minute test.
The two alarms are marked as points A and L in Figure 8. Alarm A is a false alarm which is not trig-
gered by TLC. It was caused by a perceptual error, in which changes in vehicle pitch caused the curva-
ture during a straight segment to actually appear leftward. It is therefore classified as a nuisance alarm,
according to my definitions in Section 1.2. The second false alarm occurred for both the NN and TLC
trials, and is a safe false alarm. This alarm was actually caused by a slow rightward drift during a left
curve. The driver then corrected. The correction, however, was too great, and he overshot a bit and
went to the left. A contributing factor to this alarm is perceptual in nature - the lateral position estimate
is incorrect due to changes in lighting.

The perceptual error which caused the first alarm was not something which would affect TLC, as it
cares only about instantaneous lane position and lateral velocity, and not current or future curvature.
This is a problem that I will have to address, even though it is perceptual in nature. Another problem
which I will have to deal with is the lack of consistency in training. I had to evaluate a few networks to
find one which worked well enough for these results. I think that despite the use of a cross validation
set, some overtraining was occurring. This is because the net that ended up doing best was not the net
which had the lowest cross validation error. This is perhaps not that surprising, given that the training,
cross-validation, and testing sets are separated in time, and driver behavior can change in the time
frames I am experimenting on.

Table 10: TLC vs. NN Alarm Response Summary

TLC Value
Mean

3.11s NN False
Alarms

2

Warning
Time Gain
Mean

0.48s TLC False
Alarms

1
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Overall, I feel these results are encouraging. I have shown that using a fairly simple learning scheme to
predict steering wheel position realizes a fairly large gain in warning time, with a small increase in
false alarms over TLC, due to increased sensitivity to perceptual errors. In fact, I could argue that false
alarm performance also improves, as thresholding TLC high enough to achieve the same warning time
as the NN increases false alarms dramatically.

Normalized Inputs

The most obvious differences between the drivers is mean lane position. From the above results, it
looks as if the NN is only learning mean lane position and variance. To test this, I normalized the
inputs, so that the lane position, yaw, and curvature each had a mean of 0 and a standard deviation of 1.
This removes the lane position bias that existed in the previous experiments. Rather than using hand-
wheel position as output, I used vehicle curvature, which is computed using vehicle yaw rate and
velocity. The reason for doing this was to try and account for steering differences in curves due to dif-
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ferences in superelevation of the road. Superelevation is the banking of the road used in curves to help
maintain stability. However, due to lack of standards, two curves with the same curvature may have
different amounts of superelevation. These two otherwise identical curves would therefore require the
driver to maintain different steering wheel positions for any given velocity. Vehicle curvature (in a glo-
bal coordinate frame) is not affected by this.

The classification results are shown in Table 11. These results are similar to those in Table 8, with the
exception of Driver 2, who is now mis-classified as driver 5 instead of driver 3. These results for the
test sets show that the differences diminish, but do not disappear when mean lane position is no longer
a factor. This indicates that the network is learning mean lane position, along with something else,
which I have not yet identified. I will have to further investigate what the network is learning, using
sensitivity analysis or weight analysis.

4.4.4. Discussion

The above sections have demonstrated the following: 1) driver differences exist, and they can be cap-
tured using a connectionist approach. 2) These differences seem to be more complicated than mean
lane position, although it is yet unclear what they are. 3) Using a neural net trained on a driver as a lane
departure warning system outperforms TLC both through an increase in warning time, and decrease in
the number of false alarms for equivalent warning time. Item 3 is the most important, as far as having
an impact on my work. The experiments in driver classification were done only to investigate whether
or not a canonical driver model, immune to changes in driver behavior over time, could be learned. The
driver classification results show two things: 1) It may be advantageous to classify drivers into catego-
ries, rather than learn individual models, and 2) vehicle state may not be sufficient to learn an individ-
ual driver model -- adding some function of driver control output may improve classification results.
Regarding future research, item 1 is discussed further in Section 7.4. Item 2 involves driver classifica-
tion, and I will investigate this further in terms of improving the driver model to enhance warning sys-
tem performance -- not in terms of improving classification performance.

Table 11: NN Classification Results (RMS Curvature) of Mini-Van Drivers

Driver 2 Driver 3 Driver 4 Driver 5 Driver 6

Driver 2 0.3344 0.3153 0.3746 0.2964 0.3329

Driver 3 0.3578 0.2573 0.2735 0.3087 0.2840

Driver 4 0.3111 0.2180 0.2483 0.2430 0.1997

Driver 5 0.3667 0.2297 0.2726 0.2508 0.1691

Driver 6 0.3392 0.2974 0.3039 0.3147 0.2528

Note: All entries should be multiplied by 1.0e-3
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4.5. Curve Negotiation Differences

Until now, my work has been on lateral control differences between drivers and how they impact lane
departure warning performance. To demonstrate that there are differences in curve negotiation behav-
ior, I computed the braking onset time of 6 runs. The 6 runs consist of 3 drivers, each making two runs
over the same stretch of rural road. This data was collected in early 1997 on rural roads, and is not part
of the initial CMU data study. I am using it because it has sharper curves than the data which I am col-
lecting. Figure 10 shows a plot for each run. The top of each plot is curvature, and the bottom is vehicle
velocity. The beginning of the curve is marked with an ‘x’, and the beginning of braking is marked
with an ‘o’. The curve onset was initially selected by hand, by looking for the point where road curva-
ture begins to shift. These estimates were then refined using on-board differential GPS to line up the
points within +/- 3m along the direction of travel, which is within the resolution of the GPS. Because
this data does not contain the brake pedal position, I used a decrease in velocity to mark the braking
onset. Table 12 shows braking onset time and change in velocity for each run. The braking time col-
umn is the time at which deceleration occurs, relative to the curve start position. A negative time indi-
cates that deceleration did not begin until the driver was within the curve. The velocity is the change in
velocity (in m.p.h.) due to the deceleration, along with final velocity after the deceleration. Note that in
most cases, the deceleration continues while in the curve, and even after exiting it.

The data illustrates 3 different behaviors. All drivers negotiated the curve at a velocity of about 48-
50mph. However, driver 1 tended to brake within the curve. Driver 2 decelerates in run 1, but actually
accelerates in run 2. Driver 3 was relatively consistent in his deceleration behavior, and tended to
decelerate before the other two drivers. This begins to shows that there are differences in curve negoti-
ation that can be exploited. However, many additional experiments need to be performed to see how
consistent these differences are, how they change over time, and how they vary with curvature.

5. Research Issues

A question that has to be asked is, if a lane departure warning system should be adaptive, what form
should this adaptation take? As the previous work shows, the current primary form of adaptation is
based on a time to lane crossing (TLC) metric, but this doesn’t seem to be sufficiently powerful.
Numerous issues arise in building a usable lane departure warning system. They include learning prob-
lems such as the scale of adaptability and recognition of valid lane changes. Practical issues such as
usability also present a challenge. The following sections address some of the issues.

Table 12: Braking Onset Time and Velocity Change

Driver 1
Braking
Time (s)

Velocity
 (m.p.h.)

Driver 2
Braking
Time (s)

Velocity
 (m.p.h.)

Driver 3
Braking
Time (s)

Velocity
 (m.p.h.)

Run 1 -0.5 -4/50 Run 1 0.0 -7/48 Run 1 2.5 -10/50

Run 2 -1.5 -3/52.5 Run 2 0.75 7/48 Run 2 3.25s -5.5/50
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Figure 10: Plots of braking onset. Each row is a driver. The top of each plot is curvature, the
bottom is velocity. The beginning of the curve is marked with an ‘x’, and the
braking onset is marked with an ‘o’.
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Driver 3, Run 1 Driver 3, Run 2
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5.1. Model Input

Given that I am interested in modeling driver behavior at a very low level, I have to be able to deter-
mine the appropriate inputs for the model. Most likely, mean lane position over the lastn seconds
would not work well, as it is a long term input. Steering wheel reversal point, which is related to TLC,
may be one appropriate input. Some questions to answer would be, in what portions of the state space
(where state space includes vehicle pose and control input) does the driver normally affect changes in
the control input? How are these changes related to surrounding vehicles and roadway geometry? Sim-
ply determining a TLC threshold is not appropriate, however, as that assumes that people drive as
hypothesized by Godthelp [17], and that has not been proven. More likely, there are other metrics
which need to be included, such as steering wheel reversal rate. Knipling and Wierwille [22] define a
set of metrics for use in drowsy driver detection. Some of those may be appropriate for this work.

5.2. Learning Method

The choice of learning method is obviously very important, and will affect the input choice. In my cur-
rent work, I have taken a simple neural network architecture, given it raw inputs, and achieved a rea-
sonable result. Taking this work further will require much more thought on the relative strengths and
weaknesses of various ML algorithms. The method chosen will have to be trainable on-line, and be
able to forget what it has learned at a rate which corresponds to the changes in driver behavior. Know-
ing when to stop learning is also important, and must be addressed when selecting the algorithm. What
makes this an interesting learning problem is that the algorithm needs to be able to follow a moving
target on-line, and know when it has come “close enough” to the target (in this case, driver behavior) to
stop learning. It also needs to be able to detect that the target has moved, and re-learn. This re-learning,
however, is domain dependent - re-learning should not occur if the driver is beginning to drive unsafely
due to drowsiness or incapacitation. The method also needs to be able to generate a confidence mea-
sure based on how well it believes it has learned the current driver. I currently see two possible
approaches. The first (which the NN approach demonstrates) is to learn a specific model for each
driver. The second approach is to learn classes of drivers, and then cluster new drivers into these
classes.

The first approach involves recording data on the driver during a training process, and then developing
a model based on it. I see this as learning a policy, in which state predicts action. I will discuss exten-
sions to my current work along these lines, along with the use of locally weighted learning [1] in Sec-
tion 7.4.

While the first approach is conceptually simple, the second approach has advantages that may make it
worthwhile. For instance, if a set of driver classes could be determined, it may be faster to classify the
driver than to learn a new model for it. This could reduce the initial training time. Particularly, the idea
has elegance if were to turn out that the driver classes had easily interpretable physical meaning (i.e.,
different levels of aggressiveness, tighter lateral control, etc.). A method for exploring these ideas will
be discussed in Section 7.4.

The above paragraphs talk about developing a predictive model of the driver, and then comparing the
prediction against the driver’s actual behavior. Another methodology, which I have not explored, is to
classify driver actions and the resulting vehicle state into ROR situation or not-ROR situation catego-
ries. In other words, treat the problem as one of classification. This is interesting from a Machine
Learning standpoint, as the classification has to occur without examples of one of the classes - i.e.,
ROR situations.



37

Driver Adaptive Warning Systems 4/1/98

5.3. Learning History

As I showed in Section 4.3, not only are there differences in lane keeping performance between driv-
ers, but within drivers as well. A driver will drive the first hour of an eight hour trip differently than the
seventh, although both performances may be adequate for safety. The differences in performance
related to time, however, have to be accounted for, to achieve the goal of minimizing false alarms.
Given that driver behavior changes over time, I need to investigate how quickly it changes, and what
forms (in terms of the yet to be decided model inputs) the changes take. While I want to be able to
adapt to long term changes resulting from road conditions or minor driver fatigue, adapting to micro-
sleep or drunkenness is definitely a bad idea. This makes the issue of selecting or modifying the proper
learning algorithm vital to this thesis.

Another problem is that near instantaneous changes in driver behavior may occur in certain situations,
particularly when roadway conditions change. For instance, a driver who has moved from a small two
lane highway to a wide three lane highway with large shoulders may now drive less tightly, because of
the additional space. This is a possible source of additional false alarms, at least until the system can
adapt to the new driving style.

5.4. Surrounding Vehicles

A driver’s behavior partially depends on the traffic he is driving in. The extent of this effect needs to be
investigated. A simple example of this effect is the tendency of drivers to drift away from trucks or
other large vehicles that are passing them. An alarm should not sound in this situation unless the drift
is greater than expected for the driver. Another situation in which the environment should modulate the
warning system is in collision avoidance maneuvers. A driver may swerve onto the shoulder to avoid
hitting an obstacle, such as an animal or tire. Sukthankar [40] dealt with surrounding vehicles at the
tactical level by using potential fields. This could be a promising approach for my work as well. The
strength of the field would depend on the location of the vehicle and individual behavior, which is to be
learned.

5.5. Curve Warning Adaptation

I do not believe that there are very many variables involved in longitudinal curve handling. One possi-
ble form of adaptation would be to learn when the driver normally applies braking, if he is going too
fast for an upcoming curve, as this is an area where driver differences have been demonstrated. Curve
handling is also very vehicle specific; trucks handle curvesvery differently than passenger cars, and
safety thresholds will have to take this into account.

5.6. Predictability vs. Efficiency

When people use a system of any kind, they like to be able to build an internal model of how it works.
They also like for they system to be efficient. In the context of a ROR warning system, efficiency can
be thought of as being proportional to warning time, and inversely proportional to false alarm rate. It is
important for drivers to know that when they do something, the response of the system is predictable
and accurate. The current version of the RALPH warning system, for instance, makes an allowance for
“curve-cutting,” or the tendency to drift towards the inside of the lane while driving on a curved road.
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The system allows the driver to drift a bit more over a lane boundary on a curve than it does on a
straight road. Passengers have reported [34] surprise at the lack of an alarm when the vehicle drifts a
bit into the shoulder during a curve, because in other situations (i.e., straight roads), a similar lane posi-
tion has resulted in an alarm.

Alternatively, the more predictable a system is, the more likely it is to be functionally limited. A newer
version of RALPH-WS has been developed which sounds an alarm strictly based on lane position.
While it is very easy for the system to display the current boundaries, and for the user to know where
he is in relation to them, the lack of adaptability can cause false alarms for certain drivers. The bound-
aries are user settable, which allows the driver to account for his own tendency to drive close to a lane
marker. However, there is no easy mechanism to adapt to changing driver behavior.

The problem comes down to finding the right balance between predictability and efficiency. Neither
extreme is optimal in the sense of user acceptance. I feel that for a lane departure warning system, the
model created has to have an easily displayable indication of how the driver is performing in regards to
that model. It should be intuitive, and should not change very quickly. This can help give the user a
feeling that the system is operating reliably and predictably.

5.7. Sensitivity to Perceptual Errors

My current work uses more information than a TLC model does, by incorporating yaw and curvature.
This additional information comes at the price of additional noise. The nuisance alarm which I show in
Section 4.4 illustrates this. The alarm occurred because of errors in the curvature estimate, which
affected the neural net much more than the TLC model. It is not appropriate to just classify these as
perception errors and blame RALPH. One possibility is to disable the alarm system when the confi-
dence drops too low. This is what is currently done in RALPH-WS. This is not an ideal solution, how-
ever. Currently, I do not have enough data to determine how much more sensitive my work will be to
perception errors than RALPH-WS is. This will have to be addressed in the future work.

5.8. System Evaluation

For this work, system evaluation is a research issue. It is large enough that it is presented in the next
section.

6. System Evaluation

This section will talk about how I will quantitatively and qualitatively evaluate my proposed system
against the RALPH lane departure warning system. Positive results in both categories are important.
Simply building a system which gives earlier warnings or reduces false alarms is not good enough if
the system does not behave in a manner that the user feels is consistent. Similarly, a simple, predictable
system which does not accurately trigger warnings and has many false alarms is not useful. The fol-
lowing two sections discuss how I plan to quantitatively and qualitatively analyze my work.
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6.1. Quantitative Analysis

The most effective quantitative analysis for a system like this is to measure how many lives are saved.
Unfortunately, that is not an easy statistic to determine. In similar situations, other researchers such as
Tijerina [43] and Burgett [6] have taken a step back, and looked at the situation immediately before an
event that they wish to measure. It is likely there are more lane departures than fatalities, as not every
departure results in a death or accident. Burgett, in particular, has started with the simple assertion that
given 100 accidents occur without a warning system, a warning system which is 50% effective will
result in prevention of 50 accidents. From there, he presents a probabilistic framework to go from vehi-
cle state to likelihood of crash. One possibility is to use vehicle state data from the Battelle Monte
Carlo simulations described in Section 1.2. From this data, it may be possible to identify vehicle and
road states which lead to RORs. A reduction in the occurrence of these states during a warning system
deployment would indicate a quantitative improvement over current systems.

6.2. Qualitative Analysis

Qualitative analysis of the warning system will require regular drivers to use it. Ultimately, the success
of this thesis will be defined by how useful the end result is to the average driver. This means that a
user study will have to be performed. This study will have to overcome some of the difficulties in cur-
rent data collection effort, such as unfamiliarity with the test vehicle, and nervousness due to experi-
menter presence.

There are a few approaches to solving this problem. The first is to loan out Navlab 8 to drivers who are
going on extended trips, and allow them to try out both my new warning system, and the RALPH
warning system. This is similar to what was done by Sayer et al. [39] to evaluate their ACC system.
Alternatively, it may be possible to develop a version of the RALPH lane tracker and warning system
that is easy to install in subject’s vehicles. Work is already in progress on this. This has the advantage
of allowing the drivers to drive vehicles that they are already familiar with. Another idea is to use the
test track at the Transportation Research Center facility in Columbus, Ohio. This would allow for con-
trolled experiments to intentionally distract the driver, such as in the Iowa simulator study [43], which
could not be conducted on a public highway.

7. Proposed Work

I address many issues in Section 5. I do not believe that I will be able to solve each of them completely.
In this section, I will detail what I will do to achieve the goals of my thesis, in roughly chronological
order.

7.1. Data Collection

I will continue the data collection I have begun. I plan to continue until data on a total of 20 subjects
has been collected. Up to now, I have been using members of the Robotics Institute as subjects. While
this has the advantage of easy recruiting, it has the disadvantage that many members of RI are some-
what familiar with the work that I am doing. Due to insurance reasons, I can only use CMU members
as subjects. Therefore, I plan to recruit outside of RI, through the use of posters and b-board messages.
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The current route, which is from Pittsburgh to Grove City, has many curves. However, these curves are
not that sharp. Generally, they are no sharper than 500m. While this is more than enough to capture
curve cutting behavior, it is not optimal for studying longitudinal differences in curve negotiation.
Therefore, I also plan to collect data on rural routes, which can have many sharp curves.

7.2. Navtech Map Evaluation

The use of GPS for curve warning systems requires an accurate map. I have access to digital maps pro-
duced by Navtech. These maps include high resolution latitude and longitude data on Pittsburgh, along
with lower resolution data on surrounding areas. I will have to evaluate this map, to determine whether
or not it is accurate enough for use. This will involve driving over different city and rural while collect-
ing road curvature and GPS data. I will then register this data against the Navtech map, and compute
road curvature accuracy.

If it turns out that the Navtech maps are not accurate enough, Pomerleau has developed a GPS map-
ping system using onboard differential GPS. Routes are mapped by repeatedly driving over them. This
system works at a resolution of +/- 3-5m, and is therefore more than accurate enough for a curve warn-
ing system. This will allow me to continue my work, even though large scale applicability will be lim-
ited until more accurate maps are publicly available.

7.3. Curve Behavior Analysis and Model Development

Until now, I have done little analysis of the differences in curve speed keeping. While I have begun to
show that there are differences in braking onset (See Section 4.5), I need to further quantify this. To
this end, I will analyze the braking onset and average velocity through curves of varying sharpness.
The goal of this is not to build tables of how different people react to curves. Rather, it is to gain insight
to determine how best to model these differences. One possibility is to use a neural net which outputs a
probability of the driver decelerating at any particular instant.

7.4. Lateral Control Model Selection

A large portion of the work I need to do will be in the area of model development. There are two issues
here. The first is to determine what needs to be learned. The second is to determine how to learn it.
Regarding the first issue, I am currently predicting driver output given vehicle state history. In other
words, I learn how the driver normally reacts, and then flag any situation in which he does not act as
predicted. However, this can result in false alarms in situations where the driver doesn’t react as pre-
dicted, yet aren’t really dangerous. It also opens up the issues of learning safe vs. unsafe behavior,
which is very domain dependent. An alternative approach is to learn the expected driver trajectory over
the next 1-2 seconds, and evaluate the final vehicle state to see if it is dangerous. This alleviates the
problem of learning safe vs. unsafe behaviors, as learning unsafe behavior would cause the system to
predict that the driver’s unsafe control outputs would place the vehicle in a dangerous state. However,
a disadvantage to this is that it may be difficult to learn to predict situations which are dangerous, as
training data for this will be sparse.

Another aspect to the first issue is whether to learn individual models, or classifications of drivers. To
this end, I will look at how to cluster similar drivers together, to allow for quicker initial training. This
will involve developing distance, or similarity metrics between drivers. A very simple one is mean lane
position. The issue may be complicated by the fact that two drivers who may be similar in one area
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(mean lane position), may be quite different in other areas, such as reaction to surrounding vehicles.
Properly weighing these differences is important. It will also be important to know when a driver can-
not be categorized in the available clusters, requiring a new category be created. The benefit of this
approach is two-fold: the first is that it forces a better understanding of the real differences between
drivers, compared to individually building models in isolation. The second advantage is the decrease in
initial training time, if a new driver could be quickly binned in the available categories.

To examine the second issue, which is to determine the proper learning framework, I will begin by
extending the work that I have done using neural nets by testing it against other drivers, and for longer
periods of time. This will include deeper analysis of the cause and nature of false alarms (both nui-
sance and safe). I do not plan to explicitly deal with unsafe false alarms, as I believe that the form of
the warning (i.e., loud alarm vs. gentle steering wheel motion) is the prime factor in causing overreac-
tions to alarms, and this is outside the scope of my thesis. As I mentioned in Section 5.1., the choice of
inputs is very important. I am currently using lane position, yaw, and road curvature. Additional infor-
mation could help force the net to learn other types of slightly longer term behavior, such as steering
wheel reversal rate, nominal yaw rates and lateral accelerations. I will have to explore the data I have
further to determine what other differences exist, and how to exploit them. I will also investigate other
neural architectures. In particular, using architectures which explicitly encode temporal relationships
such as BackProp Through Time [20] may improve performance and learning speed.

I will also look at how memory based learning (MBL) could be applied to the problem. One advantage
of MBL, or locally weighted regression (LWR) [1], is that training is essentially cost-free (although
this is at the expense of query time). Using MBL also simplifies the training set management that
would be required for a neural net approach. Confidence measures can be derived for specific situa-
tions, allowing incremental learning to proceed more quickly. For instance, if the system has learned
how the driver responds in left curves, the warning system could be active during left curves, even
though it has not yet experienced other parts of the state space. From a usability standpoint however,
activating and deactivating the system in different situations may be confusing for the driver.

However, one feature of MBL which is an advantage in many domains, is actually a disadvantage for
my application -- it is that MBL does not forget old experiences as new ones accrue. In a domain where
behavior is non-stationary, this is a serious issue. Applying forgetting to MBL in a principled manner
is still an open area of research. A contribution in this area would be applicable to domains beyond
driving where the proper response to a situation changes over time.

7.5. Evaluation On CMRI Truck Driver Data

I would like for my system to be useful to truck drivers as well as passenger car drivers, because truck
drivers are particularly prone to ROR situations due to the long hours they spend driving. This presents
a challenge, as truck drivers are much more variable in their behavior than passenger car drivers. I will
have to expand upon my work using the virtual lane boundaries to account for the tendency of truck
drivers to drive outside their lane. Finding the minimal amount to increase the lane, while still main-
taining warning accuracy will be an interesting problem. Final evaluation on truck drivers will most
likely not be possible. However, CMRI has recently acquired a four degree-of-freedom truck simulator
which may be useful for both additional data collection, and system evaluation.
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7.6. Accounting for Surrounding Vehicles

Rather than adding inputs to the driver model to represent surrounding vehicles, I plan to model them
using a potential field approach. I feel that this is the correct method because the presence of other
vehicles induces predictable behavior in drivers. If a driver is in the left lane, and there is a large vehi-
cle to his right, he will most likely allow himself to drift to the left somewhat (although the initial pass-
ing of a large vehicle may actually suck the driver towards it). The adaptation required here is to learn
how much of a drift is normal. While it is possible to learn the reactions of the driver to surrounding
vehicles using the same method with which I will learn his control behavior, doing so increases the
dimensionality of the state space, which can have a detrimental effect on training time and accuracy.
Explicitly modeling the effects of surrounding vehicles on the driver allows me to get around this.

7.7. Final User Study

The final thing I need to do is evaluate the complete system. This will involve outfitting subjects vehi-
cles with a version of RALPH-WS and my system, and record system performance while the subject
drives on a long trip. Depending on the number of subjects available, I have two options. The first
(preferable) is to place each subject in one of three groups: A control group with the warning system
active, but no alarm, and two test groups -- one using the RALPH warning system, the other using
mine. A fairly large number of subjects would be required to make this feasible (approximately 30).
Given that I will most likely have fewer subjects, I could have RALPH-WS active for a certain number
of days, and my system active for some days, and then ask the user to evaluate both systems. Preparing
my system for the user study will require thought about how to interact with the user using the
RALPH-WS user interface, along with the predictability of the system. The model I will use will be
more complicated in some respects than current systems. However, most drivers would want some
indication of how they are performing relative to the model, and this has to be easy for the average user
to understand. Furthermore, system sensitivity should be tunable by the user. When I develop the
model, I will have to keep these concerns in mind. Even though the main contributions of this work
will be technical, the final evaluation will be subjective. Balancing both considerations is a difficult
problem.

8. Expected Contributions

The primary contribution of this thesis is an advancement in the state of the art of lane departure and
curve negotiation warning systems. Secondary advancements in the domains of driver modeling and
continually adaptive learning will be required. I also see this work as providing a contribution to the
area of driver assistance systems. The technology developed here will be applicable towards making
lane keeping assistance systems which attempt to keep the driver in a groove that he is used to, as
opposed to the center of the lane, as current systems do [45]. The adaptive curve warning component
could also be used to enhance the driver’s comfort while using ACC systems by braking in curves
where the driver normally would. A further contribution is an evaluation of the system by untrained
users. In the following list, I see the 1st item as the main contribution, and the rest as subsidiary contri-
butions.

1. A working driver adaptive lane departure warning system which performs qualitatively and quanti-
tatively better than RALPH-WS, on the road, using the perceptual abilities of the RALPH lane
tracker.
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2. A working driver adaptive GPS based curve negotiation warning system, tied into 1.

3. A contribution to continually adaptive learning.

4. Evaluation of the full system on a Navlab vehicle, with naive drivers..

5. Analysis of effects of vehicle environment on lane keeping behavior.

6. A greater understanding of low level driver behavior, which can extend to other control tasks where
the operator behavior to a given situation changes over time.

9. Schedule

The following is a schedule for completion of this thesis. My expected defense date is August, 1999
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